Product Description
Factory-made Stainless Steel Large gearbox drive cast iron worm gear worm shaft
This product is 1 customized screw helical Shaft made of heavy steel of Stainless Steel used for Machine mechanical parts, a 1.2kw laser cutting machine cuts it and lathe work finishes it, and a professional machine strength forms the spiral shape and global standard welding skill finishes it. The cutting edge of this screw plate is very smooth and the tolerance is controlled within 0.05~0.1mm according to the drawing required measure, which is a very high standard in the whole industry. The professional welding standard makes it look very nice.
We also offer various customized laser cutting, forming, bending, and welding services for steel, copper, aluminum, etc materials, and the thickness can be arranged from 1~50mm.
Welcome to contact us for further discussion !!!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Carbon Steel |
---|---|
Load: | Drive Shaft |
Stiffness & Flexibility: | Flexible Shaft |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | Order Sample SAMPLES
|
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do screw jacks impact the overall cost-effectiveness of industrial processes?
Screw jacks have a significant impact on the overall cost-effectiveness of industrial processes. They offer several advantages that contribute to cost savings, improved efficiency, and increased productivity. Here’s how screw jacks impact the cost-effectiveness of industrial processes:
- Precision and Accuracy: Screw jacks provide precise and accurate positioning, alignment, and movement of components. This precision reduces errors, rework, and scrap, resulting in higher product quality and lower production costs. Accurate positioning also improves the efficiency of assembly, reducing the time required for adjustments and alignments.
- Flexibility and Adaptability: Screw jacks are versatile and can be customized to meet specific requirements. They can be easily integrated into existing systems or machinery, allowing for cost-effective modifications or upgrades. Their adaptability enables the optimization of processes, reducing the need for expensive equipment replacements.
- Load Handling Capacity: Screw jacks have high load handling capacities, allowing them to support heavy loads. This eliminates the need for additional equipment or specialized machinery, reducing capital investment and operational costs. The ability to handle substantial loads efficiently also improves productivity and throughput.
- Maintenance and Durability: Screw jacks are designed for durability and require minimal maintenance. Their robust construction and use of materials that withstand harsh environments contribute to their long service life. Reduced maintenance requirements result in lower maintenance costs and less downtime, leading to increased overall productivity.
- Energy Efficiency: Screw jacks offer energy-efficient operation. They consume power only during movement or adjustment and require no power when holding a position. This energy efficiency reduces operational costs and contributes to a greener and more sustainable approach to industrial processes.
- Safety and Operator Ergonomics: Screw jacks can improve safety and operator ergonomics in industrial processes. They allow for controlled and precise movement, reducing the risk of accidents or injuries. Moreover, screw jacks can be designed to facilitate ergonomic positioning of workpieces, reducing strain on operators and enhancing their productivity.
- Reliability and Longevity: Screw jacks are known for their reliability and long service life. Their robust construction and use of high-quality materials ensure dependable performance even in demanding industrial environments. The reduced need for frequent replacements or repairs contributes to cost savings in the long run.
By offering precision, flexibility, efficiency, durability, and safety, screw jacks positively impact the cost-effectiveness of industrial processes. They optimize productivity, reduce operational expenses, and enhance the overall efficiency of manufacturing, assembly, and material handling processes.
What safety precautions should be followed when operating screw jacks?
Operating screw jacks safely is essential to prevent accidents, injuries, and damage to equipment. Here are some important safety precautions that should be followed when operating screw jacks:
- Read and Understand the Manual: Before operating a screw jack, carefully read and understand the manufacturer’s instruction manual. The manual provides important safety information, operating procedures, and maintenance guidelines specific to the screw jack model. Following the manufacturer’s instructions is crucial for safe and proper operation.
- Inspect the Screw Jack: Prior to use, inspect the screw jack for any signs of damage, wear, or loose components. Check for proper lubrication and ensure that all connections and fasteners are secure. If any issues are identified, do not operate the screw jack and address the problems through maintenance or contact the manufacturer for assistance.
- Use Appropriate Personal Protective Equipment (PPE): When operating a screw jack, wear the necessary personal protective equipment (PPE) as recommended by the manufacturer and applicable safety regulations. This may include safety glasses, gloves, steel-toed shoes, or other protective gear depending on the specific application and work environment.
- Ensure Stable Support: Place the screw jack on a stable and level surface capable of supporting the load. Ensure that the supporting structure or surface is capable of withstanding the forces generated during the lifting or lowering operation. Use appropriate blocking or shoring if additional support is required.
- Do Not Exceed Load Capacity: Never exceed the load capacity specified by the manufacturer for the screw jack. Overloading the screw jack can lead to instability, component failure, or other safety hazards. It is important to know the weight of the load being lifted or supported and select a screw jack with an appropriate load rating.
- Operate Smoothly and Carefully: Operate the screw jack smoothly and carefully, avoiding sudden or jerky movements. Use the operating handle or control mechanism provided by the manufacturer and follow the recommended operating procedures. Maintain control over the lifting or lowering process, and ensure that personnel or body parts are clear of pinch points or potential hazards.
- Do Not Use as a Permanent Support: Screw jacks are not designed to be used as permanent supports or to sustain constant loads over extended periods. They are intended for intermittent or temporary use. Avoid using screw jacks as permanent supports or in situations where prolonged load-bearing is required.
- Properly Store and Maintain: After use, properly store the screw jack in a clean and dry environment. Follow the manufacturer’s maintenance guidelines for lubrication, inspection, and periodic maintenance. Regularly check the screw jack for any signs of wear, damage, or deterioration, and address any issues promptly.
- Training and Competence: Ensure that operators are adequately trained and competent in the safe operation of screw jacks. Training should cover proper use, maintenance, and understanding of the associated hazards and safety precautions.
Following these safety precautions when operating screw jacks promotes a safe working environment and helps prevent accidents or injuries. It is important to prioritize safety and adhere to the manufacturer’s guidelines and industry best practices.
What is a screw jack and how is it used in various applications?
A screw jack is a mechanical device that converts rotational motion into linear motion. It consists of a threaded shaft (screw) and a nut that engages with the screw. When the screw is rotated, it moves the nut along the screw’s threads, causing linear displacement. Screw jacks are commonly used in various applications where heavy loads need to be lifted, lowered, or positioned with precision. Here are some key points regarding screw jacks and their applications:
- Principle of Operation: Screw jacks operate based on the principle of linear motion generated by the rotary motion of the screw. When the screw is rotated using a handle, motor, or other power source, the nut moves along the screw’s threads, resulting in linear displacement. The pitch of the screw determines the distance traveled per revolution.
- Lifting and Lowering Heavy Loads: Screw jacks are frequently used for lifting and lowering heavy loads in various industries. They provide a mechanical advantage, allowing operators to exert relatively low force to move substantial loads vertically. Screw jacks are commonly used in applications such as automotive lifts, industrial machinery, stage rigging, and construction equipment.
- Precision Positioning: Screw jacks are capable of precise positioning due to their ability to control linear displacement. By accurately controlling the rotational motion of the screw, the nut can be moved with high precision, enabling precise positioning of loads or equipment. This makes screw jacks suitable for applications that require fine adjustments, such as in assembly lines, testing equipment, or positioning systems.
- Load Capacity: Screw jacks are designed to handle a wide range of load capacities, from relatively light loads to extremely heavy loads. The load capacity of a screw jack depends on factors such as the diameter and pitch of the screw, the material and design of the components, and the mechanical arrangement of the jack. Specialized screw jacks can be engineered to handle loads ranging from a few kilograms to several hundred tons.
- Multiple Jack Systems: In applications that require lifting or moving exceptionally heavy loads or to distribute the load evenly, multiple screw jacks can be used in a synchronized arrangement. By mechanically linking several screw jacks together, they can be operated simultaneously to ensure coordinated and balanced lifting or lowering of the load.
- Automation and Motorization: While manual operation using a handle is common for smaller loads, larger and more complex applications often utilize motorized or automated systems. Electric motors, hydraulic systems, or pneumatic systems can be integrated with screw jacks to provide power and control for lifting or positioning operations. This enables efficient and precise operation, especially in industrial or automated processes.
Screw jacks are versatile mechanical devices used for lifting, lowering, and positioning heavy loads with precision. Their applications range from simple manual operations to complex automated systems, making them indispensable in various industries that require controlled linear motion and load handling.
editor by Dream 2024-05-17
China Best Sales Cold Heading Gear, Cold Pressurized Fittings, Cold Extruded Gears, Gear Shaft screw drive shaft
Product Description
Detailed Photos
Company Profile
HangZhou NEWSCREW FASTENER CO., LTD.
NEWSCREW FASTENER was founded in 2008. We own 2 factories located in ZHangZhoug and ZheJiang Province, which have superior geographical advantages. With a total investment of 3 million US dollars, we have 315 employees and cover more than 25,000 square meters.
As a key fastener enterprise, we are a member of the National Fastener Standardization Technical Committee. We have strong technical force and advanced equipments like multi-station cold heading machines, fastener manufacturing machines, raw material annealing furnaces, heat treatment furnaces, electro-galvanizing production lines, blackening production lines, etc. We also have complete quality testing system and passed ISO9001 quality management system certification.
We export our products to more than 40 countries, such as United States, Europe, South America, Africa, the Middle East and so on. Our products include threaded rods, bolts, nuts, various screws, washers, anchors etc., which are used in machinery, vehicles, shipbuilding, railway, construction, instrumentation and other industries. Product standards include German standard, Australian standard, American standard, Japanese standard and national standard.
Workshop for bolt, screw, threaded rod, nut, etc
Our Exhibition
Canton Fair – Fastener Fair Stuttgart – Fastener Fair Mexico
Package for threaded rod, bolt, nut, screw etc
Mainly Product: Carbon steel and Stainless steel |
Rod : Threaded rod, stud bolt ect |
BOLT : Hex bolt , Carriage bolt, Hex flange head bolt, achor bolt ect |
Nut : Hex nut, Hex nylon nut, CZPT nut, cap nut, T-Nut, Square nut, Rivet nut, Hex coupling nut etc |
Screw : Drywall Screw, Chipboard screw, Wood screw, Self tapping screw, Machine screw, roofing screw, Self drilling screw Concrete screw, Confirmat screw, Decking screw etc. |
Washer : Flat washer, Spring washer, Lock washer, Plain washer ect |
Anchor: Wedge anchor, Drop in anchor, Ceiling anchor, Sleeve anchor, Hammer drive anchor etc. |
Rivet: Blind rivet |
Rigging: Turnbukles, D Shackle,Wire Rope Thimbles, Wire Rope Clip, Quick Link,Spring Snap Hook, Eye Bolt, Eye Nut, etc. |
Certificates:
ISO 9001
3.1B cerfificate
SGS report
FAQ.
Q: Are you manufacturer or trading company ?
A: We produce threaded rods for more than 14 years, We owned more than 76 sets of producing equipments.
Q: What’s your sample policy ?
A: Our sample is free
Q: What’s your MOQ ?
A: 200 kgs per size
Q: What’s your payment term:
A: TT, LC, DP
Q:How is your inspection process ?
A:We have good QC inspection tear and full set of inspect equipment, we can give quality certificates.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Carbon Steel |
---|---|
Type: | Round Head |
Connection: | Common Bolt |
Samples: |
US$ 200/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do screw jacks compare to other methods of lifting and adjusting loads?
When comparing screw jacks to other methods of lifting and adjusting loads, several factors come into consideration. Here’s a comparison of screw jacks with other commonly used methods:
- Hydraulic Systems: Screw jacks offer several advantages over hydraulic systems:
- Control and Precision: Screw jacks provide precise control and incremental adjustments. Hydraulic systems, on the other hand, may have limitations in terms of fine-tuning and precise positioning.
- Self-Locking: Screw jacks have a self-locking feature, which means they can hold positions without the need for continuous hydraulic pressure. Hydraulic systems typically require constant pressure to maintain position, which can be a disadvantage in certain applications.
- Simplicity and Maintenance: Screw jacks are generally simpler in design and require less maintenance compared to hydraulic systems. Hydraulic systems involve additional components such as pumps, hoses, valves, and hydraulic fluid, which can introduce complexity and maintenance requirements.
- Load Capacity: Screw jacks are available in a wide range of load capacities, making them suitable for both light-duty and heavy-duty applications. Hydraulic systems can handle higher loads but may be less suitable for precise adjustments in lighter load ranges.
- Pneumatic Systems: Screw jacks offer several advantages over pneumatic systems:
- Precision and Control: Screw jacks provide precise and controlled adjustments, allowing for accurate positioning. Pneumatic systems may have limitations in terms of fine-tuning and precise control.
- Self-Locking: Screw jacks have a self-locking feature, which allows them to hold positions without the need for continuous pneumatic pressure. Pneumatic systems require continuous pressure to maintain position, which can be a drawback in certain applications.
- Energy Efficiency: Screw jacks are typically more energy-efficient compared to pneumatic systems since they do not require a constant supply of compressed air.
- Load Capacity: Screw jacks can handle a wide range of load capacities, making them suitable for various applications. Pneumatic systems may have limitations in terms of handling heavy loads.
- Electric Actuators: Screw jacks offer several advantages over electric actuators:
- Load Capacity: Screw jacks are capable of handling high loads and are suitable for heavy-duty applications. Electric actuators may have limitations in terms of load capacity.
- Self-Locking: Screw jacks have a self-locking feature, which allows them to hold positions without the need for continuous electric power. Electric actuators may require continuous power to maintain position.
- Precision and Control: Screw jacks provide precise control and incremental adjustments. Electric actuators can offer precise positioning but may have limitations in terms of fine-tuning and incremental adjustments.
- Cost-Effectiveness: Screw jacks are often more cost-effective compared to electric actuators, making them a preferred choice in certain applications.
It’s important to note that the choice between screw jacks and other methods depends on the specific requirements of the application, such as load capacity, precision, control, maintenance, and cost considerations. Each method has its strengths and limitations, and manufacturers and engineers evaluate these factors to determine the most suitable solution for a particular lifting or adjusting task.
Can screw jacks be used for both light-duty and heavy-duty applications?
Yes, screw jacks are versatile mechanical devices that can be used for both light-duty and heavy-duty applications. Their design and construction allow them to handle a wide range of loads, making them suitable for various industrial, commercial, and residential tasks. Here’s how screw jacks are used in both light-duty and heavy-duty applications:
- Light-Duty Applications: Screw jacks find application in numerous light-duty tasks where precise positioning, lifting, or adjustment is required. Examples of light-duty applications include:
- Workbenches and assembly stations: Screw jacks can be employed to adjust the height of workbenches or assembly stations, allowing operators to work at comfortable levels.
- Stage and theater equipment: Screw jacks are used to raise or lower stage platforms, lighting fixtures, or props, allowing for easy setup and adjustments during performances.
- Medical and healthcare equipment: Screw jacks are utilized in medical beds, examination tables, or dental chairs to enable height adjustments for patient comfort and medical procedures.
- Optical and laboratory equipment: Screw jacks provide precise vertical positioning in optical systems, microscopes, or laboratory setups, ensuring accurate alignment and focus.
- Residential applications: Screw jacks can be used in home applications, such as adjustable tables, ergonomic furniture, or lifting mechanisms for storage units.
- Heavy-Duty Applications: Screw jacks are also capable of handling heavy-duty applications that involve substantial loads and demanding conditions. Examples of heavy-duty applications include:
- Industrial machinery: Screw jacks are utilized in various industrial machinery, including presses, injection molding machines, or material handling equipment, to provide precise control and lifting capabilities.
- Construction and infrastructure projects: Screw jacks are employed in construction tasks, such as formwork systems, scaffolding, or temporary structures, for lifting, leveling, or supporting heavy loads.
- Transportation and automotive: Screw jacks find application in automotive lifts, vehicle maintenance equipment, or cargo handling systems, enabling the lifting and positioning of heavy vehicles or loads.
- Shipbuilding and offshore industries: Screw jacks are used in shipbuilding and offshore applications for tasks such as aligning sections, adjusting propeller pitch, or lifting heavy components during construction or maintenance.
- Mining and heavy equipment: Screw jacks are utilized in mining machinery, cranes, or heavy equipment for load positioning, maintenance, or stabilization.
It’s important to note that the specific design, size, and load capacity of the screw jack should be matched to the requirements of the application. Manufacturers provide a wide range of screw jack models with varying load capacities, travel distances, and configurations to accommodate both light-duty and heavy-duty applications. Proper selection and installation of the screw jack ensure optimal performance and safety in diverse tasks.
Which industries and sectors commonly rely on screw jacks for their operations?
Screw jacks find applications in various industries and sectors where lifting heavy loads, adjusting height, or precise positioning is required. Here are some of the industries and sectors that commonly rely on screw jacks for their operations:
- Manufacturing: Screw jacks are extensively used in manufacturing industries for tasks such as lifting and positioning heavy equipment, adjusting assembly line heights, and aligning components during production processes.
- Construction: The construction industry utilizes screw jacks for tasks like lifting and stabilizing structural elements during building construction, adjusting formwork and scaffolding heights, and positioning heavy machinery or materials.
- Automotive: In the automotive sector, screw jacks are employed for lifting vehicles during maintenance and repairs, adjusting conveyor heights in assembly lines, and positioning components during manufacturing processes.
- Transportation and Logistics: Screw jacks are used in transportation and logistics for tasks such as adjusting loading dock heights, raising or lowering platforms on trucks or trailers, and positioning cargo handling equipment.
- Entertainment and Events: The entertainment and events industry relies on screw jacks for stage setups, lifting and adjusting lighting equipment, raising or lowering platforms for performers, and creating dynamic stage effects.
- Aerospace and Defense: Screw jacks are utilized in the aerospace and defense sectors for applications such as adjusting heights of launch platforms, positioning aircraft components during assembly, and operating heavy-duty doors or hatches.
- Material Handling and Warehousing: Screw jacks are found in material handling and warehousing operations for tasks like adjusting conveyor heights, lifting heavy pallets or containers, and positioning racks or shelves.
- Mining and Heavy Machinery: The mining industry and sectors involving heavy machinery utilize screw jacks for lifting and positioning equipment, adjusting conveyor heights, and supporting heavy loads in various mining operations.
- Energy and Utilities: Screw jacks are employed in energy and utility sectors for tasks such as adjusting heights of solar panels or wind turbines, raising or lowering equipment in power plants, and positioning components in utility infrastructure.
- Medical and Rehabilitation: In the medical and rehabilitation fields, screw jacks are used for height adjustment of medical beds, positioning of imaging equipment, and providing adjustable support systems for patients.
This list is not exhaustive, and screw jacks may find applications in other industries and sectors beyond those mentioned. The versatility, load capacity, and precise control offered by screw jacks make them valuable tools in a wide range of operations requiring lifting, adjusting, or positioning heavy loads.
editor by CX 2024-04-12
China high quality CZPT High Precision Gear Shaft, Grinding Grade 4, 5, 6 supplier
Product Description
1.Product Description
High Precision Grade 5, Grade 6, Grade 7 Gear, Bevel Gear, Gear Pinion with Straight Teeth
High precision Grinding Machine guarantee high quality.
1.1. Bevel Gear, Pinion Shaft Processing
Gear drawing— Simulation Modelling—Making casting model—Casting— Primary Detection—Rough machining—Hardening Tempering—Semi-finishing machining —Hobbing—Tooth Surface Quenching—Gear grinding—Gear Surface Carburzing—Inspection—Spray Anti-rust Oil—Package—Delivery
Gear Shaft drawing CHECK, Make Forging Mold, Forging Mold Quality Inspection Check, Machine Processing, Check Size\Hardness\Surface Finish and other technical parameters on drawing.
2.2. Bevel Gear Package
Spray anti-rust oil on Herringbone Gear Shaft, Wrap waterproof cloth around Gear Shaft for reducer, Prepare package by shaft shape&weight to choose steel frame, steel support or wooden box etc.
1.3. OEM Customized Pinion Shaft
We supply OEM SERVICE, customized herringbone gear shaft with big module, more than 1tons big weight, more than 3m length, 42CrMo/35CrMo or your specified required material gear shaft.
2.Product Technical info.
Module | m | Range: 5~70 |
Gear Teeth Number | z | OEM by drawing’s technical parameters |
Teeth Height | H | OEM by drawing’s technical parameters |
Teeth Thickness | S | OEM by drawing’s technical parameters |
Tooth pitch | P | OEM by drawing’s technical parameters |
Tooth addendum | Ha | OEM by drawing’s technical parameters |
Tooth dedendum | Hf | OEM by drawing’s technical parameters |
Working height | h’ | OEM by drawing’s technical parameters |
Bottom clearance | C | OEM by drawing’s technical parameters |
Pressure Angle | α | OEM by drawing’s technical parameters |
Helix Angle, | OEM by drawing’s technical parameters | |
Surface hardness | HRC | Range: HRC 50~HRC63(Quenching) |
Hardness: | HB | Range: HB150~HB280; Hardening Tempering/ Hardened Tooth Surface |
Surface finish | Range: Ra1.6~Ra3.2 | |
Tooth surface roughness | Ra | Range: ≥0.4 |
Gear Accuracy Grade | Grade Range: 5-6-7-8-9 (ISO 1328) | |
Diameter | D | Range: 1m~16m |
Weight | Kg | Range: Min. 100kg~Max. 80tons Single Piece |
Gear Position | Internal/External Gear | |
Toothed Portion Shape | Spur Gear/Bevel/Spiral/Helical/Straight | |
Shaft shape | Herringbone Gear Shaft / Gear Shaft / Eccentric Shaft / Spur Gear / Girth Gear / Gear Wheel | |
Material | Forging/ Casting |
Forging/ Casting 45/42CrMo/40Cr or OEM |
Manufacturing Method | Cut Gear | |
Gear Teeth Milling | √ | |
Gear Teeth Grinding | √ | |
Heat Treatment | Quenching /Carburizing | |
Sand Blasting | Null | |
Testing | UT\MT | |
Trademark | TOTEM/OEM | |
Application | Gearbox, Reducer, Petroleum,Cement,Mining,Metallurgy etc. Wind driven generator,vertical mill reducer,oil rig helical gear,petroleum slurry pump gear shaft |
|
Transport Package | Export package (wooden box, steel frame etc.) | |
Origin | China | |
HS Code | 8483409000 |
Material Comparison List
STEEL CODE GRADES COMPARISON | |||||
CHINA/GB | ISO | ГΟСТ | ASTM | JIS | DIN |
45 | C45E4 | 45 | 1045 | S45C | CK45 |
40Cr | 41Cr4 | 40X | 5140 | SCr440 | 41Cr4 |
20CrMo | 18CrMo4 | 20ХМ | 4118 | SCM22 | 25CrMo4 |
42CrMo | 42CrMo4 | 38XM | 4140 | SCM440 | 42CrMo4 |
20CrMnTi | 18XГT | SMK22 | |||
20Cr2Ni4 | 20X2H4A | ||||
20CrNiMo | 20CrNiMo2 | 20XHM | 8720 | SNCM220 | 21NiCrMo2 |
40CrNiMoA | 40XH2MA/ 40XHMA |
4340 | SNCM439 | 40NiCrMo6/ 36NiCrMo4 |
|
20CrNi2Mo | 20NiCrMo7 | 20XH2MA | 4320 | SNCM420 |
3.Totem Service
TOTEM Machinery focus on supplying GEAR SHAFT, ECCENTRIC SHAFT, HERRINGBONE GEAR, BEVEL GEAR, INTERNAL GEAR and other parts for transmission devices & equipments(large industrial reducers & drivers). Which were mainly used in the fields of port facilities, cement, mining, metallurgical industry etc. We invested in several machine processing factories,forging factories and casting factories,relies on these strong reliable and high-quality supplier network, to let our customers worry free.
TOTEM Philosophy: Quality-No.1, Integrity- No.1, Service- No.1
24hrs Salesman on-line, guarantee quick and positive feedback. Experienced and Professional Forwarder Guarantee Log. transportation.
4.About TOTEM
1. Workshop & Processing Strength
2. Testing Facilities
3. Customer Inspection & Shipping
5. Contact Us
ZheJiang CZPT Machinery Co.,Ltd
Facebook: ZheJiang Totem
Application: | Motor, Motorcycle, Machinery, Marine, Cement |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | Internal/External |
Manufacturing Method: | Cast Gear |
Toothed Portion Shape: | Bevel Wheel |
Material: | Cast Steel |
Customization: |
Available
| Customized Request |
---|
How do screw jacks contribute to the safety of tasks like vehicle maintenance?
Screw jacks play a crucial role in ensuring the safety of tasks like vehicle maintenance. They provide stability, lifting capabilities, and precise control, which are essential for safe and efficient maintenance operations. Here’s how screw jacks contribute to safety in vehicle maintenance:
- Stability and Load Capacity: Screw jacks are designed to provide high stability and support heavy loads. When used in vehicle maintenance, they offer a solid and secure platform for lifting and supporting the vehicle. This stability ensures that the vehicle remains steady during maintenance tasks, reducing the risk of accidents or injuries caused by uncontrolled movement or instability.
- Precise Height Adjustment: Screw jacks allow for precise height adjustment, enabling mechanics to position the vehicle at the desired working height. This precise control ensures that the vehicle is at an optimal height for accessing various components, performing inspections, or conducting repairs. It helps maintain a comfortable working posture for mechanics, minimizing the risk of strain or injury.
- Locking Mechanisms: Screw jacks often incorporate locking mechanisms to securely hold the lifted load in position. These locking mechanisms prevent accidental lowering of the vehicle during maintenance tasks, providing an additional layer of safety. Even in the event of power loss or system failure, the locking mechanism ensures that the vehicle remains elevated, reducing the risk of injury or damage.
- Even Weight Distribution: When multiple screw jacks are used in a synchronized system, they distribute the load evenly, ensuring balanced support. This even weight distribution minimizes stress on individual components and prevents overloading, reducing the risk of equipment failure or accidents caused by imbalanced loads.
- Integration with Safety Systems: Screw jacks can be integrated with safety systems to enhance overall safety during vehicle maintenance tasks. For example, limit switches or proximity sensors can be used to prevent the screw jacks from exceeding their maximum or minimum height limits. Emergency stop buttons or safety interlocks can be integrated into the control system, allowing immediate halting of the lifting operation in case of emergencies or hazardous situations.
The combination of stability, precise control, locking mechanisms, even weight distribution, and integration with safety systems makes screw jacks a reliable and safe solution for vehicle maintenance tasks. They provide mechanics with a secure working platform, reduce the risk of accidents, and contribute to the overall safety and efficiency of vehicle maintenance operations.
How do screw jacks enhance the performance of lifting and leveling applications?
Screw jacks are versatile mechanical devices that enhance the performance of lifting and leveling applications in several ways. Here are some ways in which screw jacks contribute to improved performance:
- Precise Positioning: Screw jacks offer precise positioning control, allowing for accurate adjustment of height or level. The threaded screw mechanism provides fine incremental movements, enabling operators to achieve the desired position with high precision. This level of control is crucial in applications where precise alignment, leveling, or height adjustment is required.
- Heavy Load Capacity: Screw jacks are capable of lifting and supporting heavy loads. They are designed to handle substantial weight and provide reliable load-bearing capabilities. The mechanical advantage of the screw thread allows for efficient transfer of force, enabling screw jacks to handle loads that would be impractical or challenging for other lifting mechanisms.
- Stability and Safety: Screw jacks offer stability and safety during lifting and leveling operations. The threaded screw mechanism ensures that the load remains secure and stable in the desired position, minimizing the risk of accidental movement or shifting. Screw jacks are designed with safety features such as locking mechanisms or braking systems to prevent unintended lowering or sudden movements, enhancing overall safety for both operators and the lifted load.
- Adjustability and Flexibility: Screw jacks provide adjustability and flexibility in lifting and leveling applications. They can be easily adjusted to accommodate different heights or levels, making them suitable for a wide range of applications. Screw jacks are available in various sizes, load capacities, and configurations, allowing for customization and adaptation to specific requirements.
- Reliability and Durability: Screw jacks are known for their reliability and durability. They are constructed with robust materials and designed to withstand heavy loads, frequent use, and harsh operating conditions. The screw thread mechanism is inherently resistant to wear and provides excellent load-holding capabilities, ensuring long-term performance and reliability.
- Manual or Motorized Operation: Screw jacks can be operated manually or with motorized systems, providing flexibility in choosing the appropriate mode of operation based on the specific application. Manual screw jacks are often used when precise control is required, while motorized screw jacks offer increased speed and automation for lifting or leveling larger or heavier loads.
By offering precise positioning, high load capacity, stability, adjustability, reliability, and flexibility in operation, screw jacks significantly enhance the performance of lifting and leveling applications. Their versatility and ability to handle heavy loads make them a preferred choice in various industries where controlled lifting, leveling, or positioning is essential.
What benefits do screw jacks offer for lifting heavy loads or adjusting height?
Screw jacks offer several benefits for lifting heavy loads or adjusting height in various applications. Here are the key benefits of using screw jacks:
- High Load Capacity: Screw jacks are designed to handle heavy loads. They can provide substantial lifting capacities and are capable of lifting loads ranging from a few kilograms to several tons. The robust construction and mechanical advantage of screw jacks allow for efficient lifting and support of heavy loads.
- Precise Positioning: Screw jacks enable precise positioning of loads or height adjustment. The linear displacement achieved per rotation of the screw can be accurately controlled. This precision is beneficial in applications where precise height adjustment or load positioning is required, such as in manufacturing processes, stage setups, or equipment installations.
- Stability and Safety: Screw jacks provide stability and ensure the safety of lifted or supported loads. Once the desired height or position is reached, the self-locking nature of the screw and nut interface helps maintain the load in position without the need for continuous power or external braking mechanisms. This inherent stability reduces the risk of accidental load movement or slippage, promoting a safe working environment.
- Mechanical Advantage: Screw jacks offer a mechanical advantage due to the pitch of the screw. By increasing the pitch or using multiple-start threads, the linear displacement achieved per rotation can be increased. This allows for the lifting or lowering of heavier loads with relatively less rotational effort. The mechanical advantage provided by screw jacks can significantly reduce the required input force or power.
- Flexible Mounting Options: Screw jacks can be mounted in various configurations to suit different applications. They can be vertically mounted for lifting or adjusting height, horizontally mounted for pushing or pulling loads, or even mounted at an angle to accommodate specific requirements. This flexibility in mounting options makes screw jacks versatile and adaptable to different lifting or positioning scenarios.
- Durability and Reliability: Screw jacks are typically constructed using robust materials such as steel or cast iron, ensuring durability and long-term reliability. They are designed to withstand heavy loads, harsh environments, and frequent use. Proper maintenance and lubrication can further enhance their lifespan and performance.
- Cost-Effective Solution: Screw jacks offer a cost-effective solution for lifting heavy loads or adjusting height compared to other alternatives such as hydraulic or pneumatic systems. They have lower installation and maintenance costs, require less complex infrastructure, and can operate without the need for additional power sources or fluid systems.
In summary, screw jacks offer benefits such as high load capacity, precise positioning, stability and safety, mechanical advantage, flexible mounting options, durability and reliability, and cost-effectiveness. These advantages make screw jacks a popular choice for applications that involve lifting heavy loads or adjusting height with precision and control.
editor by CX 2023-12-14
China supplier OEM Custom Precision Machined Parts Gear Shaft set screw shaft coupling
Product Description
Product Description
Business type | Factory/manufacturer |
Service |
CNC machining |
Turning and milling | |
CNC turning | |
OEM parts | |
Material |
(1) Aluminum:AL 6061-T6,6063,7075-T |
(2)Stainless steel:303,304,316L,17-4(SUS630) | |
(3)Steel:4140,Q235,Q345B,20#,45# | |
(4)Titanium:TA1,TA2/GR2,TA4/GR5,TC4,TC18 | |
(5)Brass:C36000(HPb62),C37700(HPb59),C26800(H68) | |
(6)Copper, bronze, magnesium alloy, Delan, POM, acrylic, PC, etc. | |
Service | OEM/ODM avaliable |
Finish |
Sandblasting, anodizing, Blackenning, zinc/Nickl plating, Poland |
Powder coating, passivation PVD plating titanium, electrogalvanization | |
Chrome plating, electrophoresis, QPQ | |
Electrochemical polishing, chrome plating, knurling, laser etching Logo | |
Major equipment | CNC machining center (milling machine), CNC lathe, grinding machine |
Cylindrical grinding machine, drilling machine, laser cutting machine | |
Graphic format | STEP, STP, GIS, CAD, PDF, DWG, DXF and other samples |
Tolerance | +/-0.003mm |
Surface roughness | Ra0.1~3.2 |
Inspection | Complete testing laboratory with micrometer, optical comparator, caliper vernier, CMM |
Depth caliper vernier, universal protractor, clock gauge, internal Celsius gauge |
Detailed Photos
Product Parameters
MATERIAL AVAILABLE | |||||
Aluminum | Stainless Steel | Brass | Copper | Plastic | Iron |
AL2571 | SS201 | C22000 | C15710 | POM | Q235 |
ALA380 | SS301 | C24000 | C11000 | PEEK | Q345B |
AL5052 | SS303 | C26000 | C12000 | PVC | 1214 / 1215 |
AL6061 | SS304 | C28000 | C12200 | ABS | 45# |
AL6063 | SS316 | C35600 | etc. | Nylon | 20# |
AL6082 | SS416 | C36000 | PP | 4140 / 4130 | |
AL7075 | etc. | C37000 | Delrin | 12L14 | |
etc. | etc. | etc. | etc. | ||
SURFACE TREATMENT | |||||
Aluminum Parts | Stainless Steel Parts | Steel Parts | Brass Parts | ||
Clear Anodized | Polishing | Zinc Plating | Nickel Plating | ||
Color Anodized | Passivating | Oxide black | chrome plating | ||
Sandblast Anodized | Sandblasting | Nickel Plating | Electrophoresis black | ||
Chemical Film | Laser engraving | Powder Coated | Powder coated | ||
Brushing | Electrophoresis black | Heat treatment | Gold plating | ||
Polishing | Oxide black | Chrome Plating | etc. | ||
Chroming | etc | etc | |||
etc | |||||
TOLERANCE | |||||
The smallest tolerance can reach +/-0.001mm or as per drawing request. | |||||
DRAWING FORMAT | |||||
PFD | Step | Igs | CAD | Solid | etc |
Packaging & Shipping
Company Profile
HangZhou Shinemotor Co.,Ltd located in HangZhou City, ZheJiang Province of China.
Mainly specializes in developing, manufacturing and selling all kinds of customized metal and plastic parts.
Our factory pass SGS, ISO9001/ ISO9001/ ISO14001 verification, parts can be widely used in the fields of automobile,
medical instruments, electronic communications, industrial and consumer applications and so on.
We have introduced a series of advanced and high performance production equipment imported from Japan and ZheJiang :
High precision cnc lathes, 5/6 axis cnc machining centers, plane grinding & centerless grinding machines,
stamping machines, wire cut machines, EDM and many other high-precision CNC equipment.
Our inspection equipment includes: projector, 2D, 2.5D, CMM, hardness testing machine, tool microscope, etc.
We dedicated to developing and producing kinds of brass, aluminum, steel, stainless steel
And plastic machining parts, stamping parts, and also CZPT design and manufacturing.
We firmly hold the concept of ” customer is the first, honesty is the basic, accrete win-win “.
Dedicated to providing you with high-quality products and excellent service!
We sincerely look CHINAMFG to creating a better future by mutually beneficial cooperation with you.
FAQ
1. Are you a factory or a trading company?
A: We are a factory which has been specialized in cnc machining & automatic manufacturing for more than 10 years.
2. Where is your factory and how can I visit it?
A: Our factory is located in HangZhou city and you can get more detailed information by browsing our website.
3. How long can I get some samples for checking and what about the price?
A: Normally samples will be done within 1-2 days (automatic machining parts) or 3-5 day (cnc machining parts).
The sample cost depends on all information (size, material, finish, etc.).
We will return the sample cost if your order quantity is good.
4. How is the warranty of the products quality control?
A: We hold the tightend quality controlling from very begining to the end and aim at 100% error free.
5.How to get an accurate quotation?
♦ Drawings, photos, detailed sizes or samples of products.
♦ Material of products.
♦ Ordinary purchasing quantity.
♦ Quotation within 1~6 hours
Material: | Carbon Steel |
---|---|
Load: | Drive Shaft |
Stiffness & Flexibility: | Stiffness / Rigid Axle |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do screw jacks handle variations in temperature and harsh operating conditions?
Screw jacks are designed to handle variations in temperature and harsh operating conditions while maintaining their performance and reliability. Here’s how screw jacks handle these challenges:
- Material Selection: Screw jacks are made from materials that can withstand harsh conditions. They are often constructed using materials such as stainless steel, which offers excellent corrosion resistance and durability. This allows screw jacks to withstand exposure to moisture, chemicals, extreme temperatures, and other harsh operating conditions.
- Surface Treatments and Coatings: Screw jacks can be treated with specialized coatings or surface treatments to enhance their resistance to corrosion, wear, and environmental factors. For example, zinc plating or epoxy coatings can be applied to protect the screw jack components from rust or chemical damage. These treatments increase the longevity and reliability of the screw jacks in harsh conditions.
- Sealing Mechanisms: Screw jacks can be equipped with sealing mechanisms to protect internal components from contaminants, moisture, or dust. Seals, gaskets, or protective covers can be used to prevent the ingress of foreign substances that could affect the performance or lifespan of the screw jack. Effective sealing mechanisms ensure the integrity and functionality of the screw jack in harsh operating conditions.
- Heat Dissipation: In applications where temperature variations are significant, screw jacks can be designed with heat dissipation features. This can include the use of cooling fins, heat sinks, or ventilation systems to dissipate excess heat generated during operation. Efficient heat dissipation helps prevent overheating and ensures optimal performance of the screw jack in high-temperature environments.
- Lubrication: Proper lubrication is essential for the smooth operation and longevity of screw jacks in harsh conditions. Specialized lubricants can be used to reduce friction, protect against wear, and maintain the performance of the screw jack over time. Lubrication also helps to minimize the effects of temperature variations on the operation of the screw jack.
- Design Considerations: Screw jacks can be designed with temperature-resistant components, such as high-temperature seals or bearings, to withstand extreme temperature variations. Additionally, thermal expansion and contraction can be accounted for in the design to ensure the stability and accuracy of the screw jack’s operation underharsh conditions.
By considering these factors and incorporating appropriate design features, screw jacks can effectively handle variations in temperature and harsh operating conditions. This allows them to maintain their performance, reliability, and longevity, even in demanding industrial environments.
How do manufacturers ensure the durability and longevity of screw jacks?
Manufacturers employ various strategies and design considerations to ensure the durability and longevity of screw jacks. These measures aim to enhance the structural integrity, reliability, and resistance to wear and tear. Here are some key approaches manufacturers use to ensure the durability and longevity of screw jacks:
- High-Quality Materials: Manufacturers use high-quality materials in the construction of screw jacks to enhance their durability. Components such as screws, nuts, housing, bearings, and load-bearing parts are often made from materials such as hardened steel alloys or other durable metals. These materials offer excellent strength, resistance to deformation, and robustness, ensuring that the screw jacks can withstand heavy loads and prolonged use.
- Surface Treatments: Surface treatments and coatings are applied to screw jack components to improve their resistance to corrosion, abrasion, and wear. Common surface treatments include electroplating, powder coating, or applying specialized protective coatings. These treatments provide a layer of defense against environmental factors, such as moisture, chemicals, or abrasive particles, which can degrade the components and compromise the longevity of the screw jacks.
- Precision Manufacturing: Precision manufacturing processes are employed to ensure the accurate fabrication of screw jacks. Tight tolerances and meticulous machining techniques are utilized to achieve proper fit and alignment of components. This precision manufacturing minimizes mechanical play, reduces friction, and optimizes the overall performance of the screw jacks, contributing to their durability and longevity.
- Load Capacity and Safety Margins: Manufacturers carefully determine the load capacity of screw jacks and incorporate safety margins to ensure their long-term durability. By specifying load capacities that exceed the expected maximum loads, manufacturers provide a safety buffer that prevents the screw jacks from operating near their limits. This approach minimizes stress on the components and extends their lifespan, reducing the risk of premature failure or damage.
- Regular Maintenance Guidelines: Manufacturers provide maintenance guidelines and recommendations for screw jacks. These guidelines outline routine maintenance tasks, such as lubrication, inspection, and cleaning, that should be performed to ensure optimal performance and longevity. Following these maintenance guidelines helps prevent the accumulation of debris, corrosion, or other factors that could negatively impact the durability of the screw jacks.
- Quality Assurance Testing: Manufacturers conduct rigorous quality assurance testing to validate the durability and longevity of screw jacks. These tests may include performance testing, load testing, endurance testing, and environmental testing. By subjecting the screw jacks to stringent testing conditions, manufacturers can verify their performance, identify potential weaknesses, and make design improvements to enhance durability and longevity.
By using high-quality materials, applying surface treatments, employing precision manufacturing, incorporating load capacity and safety margins, providing maintenance guidelines, and conducting quality assurance testing, manufacturers ensure the durability and longevity of screw jacks. These measures help to deliver reliable and long-lasting products that can withstand demanding applications and operating conditions.
How do screw jacks handle variations in load, speed, and precision?
Screw jacks are designed to handle variations in load, speed, and precision through several mechanisms and features. Here’s how screw jacks handle these variations:
- Load Variations: Screw jacks are capable of handling different load variations. The load capacity of a screw jack depends on factors such as the mechanical strength of the components, the thread design, and the material properties. By selecting the appropriate screw jack with the required load capacity and considering factors such as the load distribution, safety factors, and duty cycle, variations in load can be accommodated within the specified limits.
- Speed Variations: Screw jacks can operate at different speeds based on the application requirements. The speed of a screw jack is influenced by factors such as the pitch of the screw, the rotational speed of the input device, and the mechanical advantage of the system. By adjusting the rotational speed of the input device or selecting screw jacks with different pitch options, variations in speed can be achieved. It is important to note that higher speeds may affect the efficiency, accuracy, and load capacity of the screw jack system.
- Precision: Screw jacks offer precise positioning capabilities. The linear displacement achieved per revolution of the screw can be accurately controlled. This precision is achieved through the pitch of the screw, which determines the linear displacement per rotation. By selecting screw jacks with suitable pitch options and incorporating additional components such as limit switches or position sensors, precise positioning can be achieved with minimal backlash or play. It is important to consider the required level of precision and the specific application’s tolerance requirements when choosing the appropriate screw jack.
- Adjustability: Screw jacks provide adjustability to accommodate variations in load, speed, and precision. The system can be fine-tuned by adjusting the input device’s rotational speed, changing the pitch of the screw, or incorporating gearing mechanisms for increased mechanical advantage. This adjustability allows for optimization based on the specific operational requirements, ensuring that the screw jack system performs effectively within the desired parameters.
- Control and Feedback: Screw jacks can be equipped with control systems and feedback mechanisms to enhance load, speed, and precision management. These systems can include motor controllers, position sensors, limit switches, or even automation interfaces. By integrating such control and feedback mechanisms, the screw jack system can be monitored, adjusted, and actively controlled to handle variations in load, speed, and precision more effectively.
In summary, screw jacks handle variations in load, speed, and precision through their design features, adjustability, and the incorporation of control systems. By selecting the appropriate screw jack and considering factors such as load capacity, speed requirements, precision needs, and control mechanisms, variations in load, speed, and precision can be accommodated to meet the specific operational demands of the application.
editor by CX 2023-12-09
China Good quality Customized Precision CNC Stainless Steel Forging Steel Gearbox Gear Shaft screw shaft condition monitoring
Product Description
Other attributes
Place of Origin
ZheJiang ,China
Type
Forging Parts
Spare Parts Type
Spindle
Video outgoing-inspection
Provided
Machinery Test Report
Provided
Marketing Type
New Product 2571
Warranty
12 Months
Key Selling Points
Long Service Life
Weight (KG)
1200 KG
Applicable Industries
Building Material Shops, Machinery Repair Shops, Manufacturing Plant, Construction works , Energy & Mining, Other
Local Service Location
None
Showroom Location
None
Brand Name
TS
Condition
New
Material
Alloy steel
Plating
anti-rust oil
Name
42CrMo Customized Large Forging Steel Rolling Mill Spare Part Roller
Quality
High Precision
Process
Lathing, milling,grinding,drilling
Heat treatment
heat treatment will be done
Diameter
860mm
Length
8000mm
Tolerance
±0.05
Torque Capacity
According to drawings
Inspection
chemical components, UT, dimension inspection
Certification
ISO
Packaging and delivery
Packaging Details
Plywood case
Port
ZheJiang ,HangZhou Port
Package Type:
Plywood case
attribute-list
Supply Ability
10000 Piece/Pieces per Year
Lead time
Quantity (kilograms) | 1 – 1000 | > 1000 |
Lead time (days) | 60 | To be negotiated |
Production Process
We can produce various specifications of gear, meanwhile, we can also provide gear blanks.
We have a full set of production processes and testing instruments for forging, heat treatment and machining.
We have 5 medium frequency furnaces and 5 electric slag heavy furnaces, which can produce 1 ton-18 tons of various types of alloy steel, with an annual capacity of 10,000 tons. The main characteristics of electroslag remelting are that it can flexibly produce various types of special steel in size and batch, with pure composition, uniform and dense crystal organization.
Natural gas digital display computer temperature control heating CZPT can accurately control the heating temperature of raw materials.
800T fast forging machine can quickly forge products, 3150T and 5000T oil press can forge heavy-duty axle products. They can guarantee the forging ratio required by the product, and ensure a good metallographic structure.
More than 20 digital display resistance furnaces can be used fot normalizing, quenching and tempering products, at the same time, there are induction quenching and carburization process, so as to ensure the mechanical performance requirements of the gear
We have a number of , HOFLER and other gear rolling machine, inner tooth ring milling machine, gear insertion machine, gear grinding machine and car milling CZPT center and other gear processing equipment.
TS regards Quality as the essential part of our business success. Based on your requirements, we have raw material in-coming inspection, process control and pre-shipment inspection. With advanced test equipments such as spectrometer, CMM, tensile strength tester, microscope, hardness tester, etc, TS is CZPT to apply sufficient chemical and physical inspection. According to your request, we are also capable to do X-Ray, Magnetic Testing, Ultrasonic Testing and liquid Penetrant Examination.
PRODUCT PACKAGING
OUR WORKSHOPS
COOPERATIVE BRAND
Product Packaging
Product PackaPRging
Material: | Steel |
---|---|
Load: | Drive Shaft |
Appearance Shape: | Steel |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can screw jacks be integrated with advanced monitoring and feedback systems?
Yes, screw jacks can be integrated with advanced monitoring and feedback systems to enhance their functionality, control, and safety. The integration of monitoring and feedback systems allows for real-time data acquisition, analysis, and precise control over the operation of screw jacks. Here’s how screw jacks can be integrated with advanced monitoring and feedback systems:
- Sensors and Load Cells: Sensors and load cells can be installed in screw jacks to measure parameters such as force, torque, displacement, or position. These sensors provide real-time feedback on the performance and condition of the screw jack, allowing for precise control and monitoring of the applied load or position.
- Position Encoders: Position encoders can be used to measure the position and movement of the screw jack accurately. By integrating position encoders, the exact position of the screw jack can be monitored and controlled, enabling precise positioning and automation in various applications.
- Control Systems: Advanced control systems, such as programmable logic controllers (PLCs) or computer numerical control (CNC) systems, can be connected to screw jacks. These control systems receive data from the sensors and load cells and use algorithms to calculate the required input commands for the screw jacks. By integrating control systems, precise and automated control over the screw jacks can be achieved.
- Human-Machine Interface (HMI): HMIs can be used to provide operators with a user-friendly interface to monitor and control the screw jacks. Through an HMI, operators can visualize real-time data, set parameters, and make adjustments as needed. This enhances the ease of operation and allows for efficient monitoring and control of the screw jacks.
- Data Logging and Analysis: Integration with advanced monitoring and feedback systems enables the collection and logging of data from the screw jacks. This data can be analyzed to identify patterns, trends, or anomalies, providing insights into the performance, efficiency, and maintenance requirements of the screw jacks. Data analysis helps optimize the operation, predict failures, and schedule maintenance tasks proactively.
- Safety Systems: Advanced monitoring and feedback systems can contribute to the safety of screw jack operations. By integrating safety features such as limit switches, emergency stop buttons, or overload protection systems, potential risks or malfunctions can be detected and appropriate actions can be taken to prevent accidents or damage.
By integrating screw jacks with advanced monitoring and feedback systems, precise control, automation, data-driven decision-making, and enhanced safety can be achieved. This integration is particularly beneficial in applications where accuracy, repeatability, and real-time control are critical, such as in industrial automation, robotics, material handling, and assembly processes.
Can you provide real-world examples of machinery or structures that use screw jacks?
Yes, screw jacks are commonly used in various machinery and structures for lifting, lowering, and positioning applications. Here are some real-world examples of machinery and structures that utilize screw jacks:
- Industrial Machinery: Screw jacks are widely used in industrial machinery and equipment. They are employed in material handling systems, assembly lines, packaging machines, and conveyors to lift or lower components, adjust working heights, or provide precise positioning. Screw jacks are also used in presses, injection molding machines, and die-casting equipment to apply controlled force or pressure.
- Construction and Infrastructure: In the construction industry, screw jacks are used in various applications. They are utilized in formwork systems to support and adjust the height of concrete molds during construction. Screw jacks are also employed in scaffolding systems to provide stability and height adjustment. In addition, they are utilized in bridge construction and maintenance to lift and position heavy components or to create temporary supports.
- Aerospace and Defense: Screw jacks find application in aerospace and defense industries. They are used in aircraft maintenance and assembly for tasks such as raising or lowering landing gear, adjusting wing flaps, or positioning aircraft components. Screw jacks are also utilized in missile launch systems, satellite deployment mechanisms, and radar systems.
- Automotive and Transportation: Screw jacks play a role in the automotive and transportation sectors. They are used in vehicle lifting systems, such as car lifts or hydraulic ramps, for maintenance and repair operations. Screw jacks are also employed in adjustable-height truck trailers, lifting platforms for disabled access vehicles, and loading dock levelers.
- Stage and Entertainment: In the stage and entertainment industry, screw jacks are utilized for stage rigging and set construction. They are employed to lift and position lighting fixtures, sound equipment, and scenery elements. Screw jacks provide precise control over the elevation and alignment of stage components, facilitating dynamic performances and efficient setup.
- Medical and Rehabilitation: Screw jacks find application in medical and rehabilitation equipment. They are used in patient lifts and adjustable hospital beds to facilitate safe patient transfers and positioning. Screw jacks also play a role in rehabilitation equipment, such as lifting platforms for physical therapy or adjustable exercise machines.
These are just a few examples of the many applications of screw jacks in various industries. The versatility, reliability, and precise control offered by screw jacks make them suitable for a wide range of machinery and structures where lifting, lowering, or positioning operations are required.
What factors should be considered when selecting the right screw jack for an application?
When selecting the right screw jack for an application, several factors should be taken into consideration. These factors help ensure that the chosen screw jack meets the specific requirements of the application. Here are the key factors to consider:
- Load Capacity: Determine the maximum load that the screw jack needs to lift or support. Consider both the static load (the weight of the load when stationary) and the dynamic load (additional forces or vibrations that may be present during operation). Select a screw jack with a load capacity that exceeds the application’s requirements to ensure safe and reliable operation.
- Travel Distance: Determine the required travel distance or height adjustment range of the screw jack. Consider both the minimum and maximum travel distances needed for the application. Ensure that the selected screw jack can provide the required travel distance without exceeding its mechanical limits.
- Speed Requirements: Consider the desired operating speed of the screw jack. Determine whether the application requires slow and precise movement or faster operation. The speed of the screw jack is influenced by factors such as the pitch of the screw and the rotational speed of the input device. Select a screw jack that can operate within the desired speed range without compromising other performance factors.
- Precision Needs: Assess the required level of precision for the application. Determine the allowable tolerance and backlash requirements. The precision of a screw jack is influenced by factors such as the pitch of the screw, the quality of the thread, and the presence of additional components such as limit switches or position sensors. Choose a screw jack that can achieve the desired precision level while maintaining stability and load capacity.
- Environmental Conditions: Consider the environmental conditions in which the screw jack will operate. Factors such as temperature, humidity, dust, and corrosive substances can affect the performance and durability of the screw jack. Select a screw jack that is designed to withstand the specific environmental conditions of the application.
- Mounting and Integration: Evaluate the available space for mounting the screw jack and consider the required integration with other components or systems. Determine whether the screw jack needs to be vertically mounted, horizontally mounted, or at an angle. Consider any specific mounting or interface requirements and ensure that the selected screw jack can be easily integrated into the existing system or structure.
- Safety and Compliance: Ensure that the chosen screw jack complies with safety standards and regulations applicable to the specific industry or application. Consider safety features such as self-locking mechanisms, overload protection, and emergency stop options. Verify that the manufacturer or supplier provides adequate documentation and certifications.
- Cost and Budget: Consider the budget and cost-effectiveness of the screw jack. Compare the prices and features of different screw jack models and brands. Evaluate the long-term maintenance and operational costs, including factors such as lubrication requirements and expected lifespan.
By carefully considering these factors, it is possible to select the right screw jack that meets the load capacity, travel distance, speed, precision, environmental, mounting, safety, and budget requirements of the specific application.
editor by CX 2023-11-21
China Best Sales OEM Factory Price for Alloy Steel Herringbone Gear Shaft for Transmission Machinery manufacturer
Product Description
Key attributes
Other attributes
Warranty
1.5 years
Applicable Industries
Building Material Shops, Manufacturing Plant, Energy & Mining
Weight (KG)
1
Showroom Location
None
Video outgoing-inspection
Provided
Machinery Test Report
Provided
Marketing Type
New Product 2571
Warranty of core components
1 Year
Core Components
Gear
Material
stainless steel 304, stainless steel 316, 42CrMo, 17CrNiMo, 45steel, 40Cr
Place of Origin
ZheJiang , China
Condition
New
Brand Name
HangZhou
China shaft manufacturer custom chrome steel shaft eccentric shaft
Product Name
Customized forging Steel large Inner tooth Gear Ring
Application
Industry/Gearbox/ Transmission Parts
Size
Customer’s Drawing
Processing
Hobbing/Milling/Shapping
Standard
DIN/GB/AISI
Surface treatment
Polishing/Grinding/ Painting/Anti Rust Oil
Heat Teatment
QT/Hardening/Carburizing
Blank
Forging or Casting as per drawing.
Quality Control
Nondestructive Testing (UT/MT/RT/PT)
Certificate
ISO9001
Packaging and delivery
Packaging Details
1.Wooden box with fumigation
2.Wooden Fram with waterproof cloth
Port
ZheJiang or HangZhou Port
attribute-list
Supply Ability
50000 Piece/Pieces per Year
Lead time
Quantity (pieces) | 1 – 10 | > 10 |
Lead time (days) | 45 | To be negotiated |
Production Process
We can produce various specifications of gear, meanwhile, we can also provide gear blanks.
We have a full set of production processes and testing instruments for forging, heat treatment and machining.
We have 5 medium frequency furnaces and 5 electric slag heavy furnaces, which can produce 1 ton-18 tons of various types of alloy steel, with an annual capacity of 10,000 tons. The main characteristics of electroslag remelting are that it can flexibly produce various types of special steel in size and batch, with pure composition, uniform and dense crystal organization.
Natural gas digital display computer temperature control heating CZPT can accurately control the heating temperature of raw materials.
800T fast forging machine can quickly forge products, 3150T and 5000T oil press can forge heavy-duty axle products. They can guarantee the forging ratio required by the product, and ensure a good metallographic structure.
More than 20 digital display resistance furnaces can be used fot normalizing, quenching and tempering products, at the same time, there are induction quenching and carburization process, so as to ensure the mechanical performance requirements of the gear
We have a number of , HOFLER and other gear rolling machine, inner tooth ring milling machine, gear insertion machine, gear grinding machine and car milling CZPT center and other gear processing equipment.
TS regards Quality as the essential part of our business success. Based on your requirements, we have raw material in-coming inspection, process control and pre-shipment inspection. With advanced test equipments such as spectrometer, CMM, tensile strength tester, microscope, hardness tester, etc, TS is CZPT to apply sufficient chemical and physical inspection. According to your request, we are also capable to do X-Ray, Magnetic Testing, Ultrasonic Testing and liquid Penetrant Examination.
PRODUCT PACKAGING
OUR WORKSHOPS
COOPERATIVE BRAND
Product Packaging
Product PackaPRging
Material: | Steel |
---|---|
Load: | Drive Shaft |
Appearance Shape: | Steel |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do screw jacks handle challenges like load imbalance or uneven surfaces?
Screw jacks are designed to handle challenges such as load imbalance or uneven surfaces through various mechanisms and features. Here’s how screw jacks address these challenges:
- Load Imbalance: Screw jacks can handle load imbalance by distributing the load evenly across multiple screw jacks. In applications where there is a significant load imbalance, multiple screw jacks can be used in a synchronized system. The synchronization ensures that each screw jack shares the load proportionally, preventing excessive stress on any individual screw jack.
- Self-Locking: Screw jacks have a self-locking feature that allows them to hold their position without the need for continuous power or external braking mechanisms. This self-locking capability helps maintain stability and prevents the load from shifting even in the absence of power or during power loss.
- Anti-Backlash Mechanism: To handle challenges related to backlash or unwanted movement caused by load imbalance or vibration, some screw jacks are equipped with anti-backlash mechanisms. These mechanisms minimize or eliminate the clearance between the screw and the nut, reducing the potential for backlash and ensuring precise positioning and stability.
- Flexible Mounting Options: Screw jacks offer flexible mounting options, which allow for proper alignment and compensation on uneven surfaces. Mounting brackets or couplings can be used to adapt the screw jacks to different orientations or to compensate for variations in the mounting surface. This flexibility ensures that the screw jacks can be securely installed and adjusted to accommodate uneven surfaces.
- Guidance Systems: In some cases, screw jacks may incorporate guidance systems to improve stability and alignment. These guidance systems can include linear guides or rails that guide the movement of the screw, ensuring smooth and accurate operation even when dealing with load imbalance or uneven surfaces.
By employing these mechanisms and features, screw jacks can effectively handle challenges related to load imbalance or uneven surfaces. They provide stability, precise positioning, and the ability to distribute loads evenly, making them suitable for a wide range of applications even in demanding environments.
Are there different types of screw jacks available for various load capacities?
Yes, there are different types of screw jacks available to accommodate various load capacities. Screw jacks are designed in different configurations and sizes to provide optimal performance and lifting capabilities for a wide range of loads. The load capacity of a screw jack depends on several factors, including the mechanical design, materials used, and the specific application requirements. Here are some common types of screw jacks based on load capacities:
- Miniature Screw Jacks: Miniature screw jacks are compact and lightweight, designed to handle relatively low loads. These screw jacks are commonly used in applications where precise positioning or small load adjustments are required. Miniature screw jacks find applications in industries such as electronics, optics, and small-scale automation systems.
- Standard Duty Screw Jacks: Standard duty screw jacks are versatile and widely used in various industrial applications. They are designed to handle moderate to high loads. These screw jacks offer a balance between load capacity and compactness, making them suitable for a wide range of lifting and positioning tasks in industries such as manufacturing, construction, and material handling.
- Heavy Duty Screw Jacks: Heavy-duty screw jacks are specifically engineered to handle large and heavy loads. These screw jacks are characterized by their robust construction, high load capacities, and enhanced durability. Heavy-duty screw jacks are utilized in applications that involve heavy machinery, industrial presses, large-scale manufacturing, and other scenarios requiring substantial lifting forces.
- Stainless Steel Screw Jacks: Stainless steel screw jacks are designed for applications where corrosion resistance and hygiene are crucial. These screw jacks are constructed using stainless steel components that offer excellent resistance to rust, chemicals, and environmental factors. Stainless steel screw jacks find applications in food processing, pharmaceuticals, clean rooms, and other industries with stringent cleanliness requirements.
- Customized Screw Jacks: In addition to standard types, manufacturers also offer customized screw jacks tailored to specific load capacities and application requirements. Customized screw jacks can be engineered to handle extremely high loads or designed for unique lifting scenarios where off-the-shelf solutions may not be suitable. These customized screw jacks are often developed in collaboration with the customer to ensure optimal performance and reliability.
The availability of different types of screw jacks allows users to select the appropriate solution based on their specific load capacities and application needs. By offering a range of load capacities, manufacturers ensure that there is a suitable screw jack available for a wide variety of lifting and positioning tasks across various industries.
Can screw jacks be customized for specific tasks like stage or platform adjustments?
Yes, screw jacks can be customized for specific tasks such as stage or platform adjustments. Customization allows screw jacks to meet the unique requirements of different applications, providing precise and reliable positioning and lifting solutions. Here’s how screw jacks can be customized for specific tasks:
- Load Capacity: Screw jacks can be customized to handle various load capacities. The load capacity of a screw jack is determined by factors such as the size and strength of the screw and the material used in its construction. By selecting the appropriate components and dimensions, screw jacks can be tailored to support the specific weight requirements of stages, platforms, or other equipment.
- Stroke Length: The stroke length of a screw jack refers to the distance it can extend or retract. By adjusting the length of the screw, the stroke length can be customized to accommodate the desired range of movement for stage or platform adjustments. This ensures that the screw jack can achieve the required height or position adjustments accurately.
- Speed: Depending on the application, the speed of stage or platform adjustments may be a critical factor. Screw jacks can be customized to provide different operating speeds by selecting the appropriate gear ratio or motor speed. This customization allows for efficient and precise adjustments, whether they need to be fast or slow.
- Mounting Options: Screw jacks can be customized to offer various mounting options to suit specific applications. Different types of mounting brackets, flanges, or couplings can be provided to ensure easy integration with existing structures or equipment. Customized mounting options simplify the installation process and enhance the overall functionality of the stage or platform adjustment system.
- Control Mechanism: Screw jacks can be customized with different control mechanisms to suit specific requirements. Manual control options, such as handwheels or crank handles, can be provided for simpler applications. For more complex systems or automated processes, electric or hydraulic motor-driven options can be implemented. Customized control mechanisms enable convenient and efficient operation of the screw jacks.
- Environmental Considerations: Depending on the operating environment, screw jacks can be customized with appropriate materials, coatings, or seals to ensure durability and performance. For example, in corrosive or outdoor settings, stainless steel or protective coatings can be applied to prevent degradation. Customization for environmental considerations enhances the longevity and reliability of screw jacks in specific tasks like stage or platform adjustments.
By offering customizable load capacities, stroke lengths, speeds, mounting options, control mechanisms, and environmental considerations, screw jacks can be tailored to meet the specific requirements of stage or platform adjustments. Customization ensures precise and reliable performance, contributing to the smooth operation of stages, platforms, or other equipment in various applications.
editor by CX 2023-11-20
China Professional China Suppliers Large Double Helical Gear Shaft threaded bearing shaft
Product Description
Other attributes
Place of Origin
HangZhou,ZheJiang ,China
Type
Forging Parts
Spare Parts Type
Spindle
Video outgoing-inspection
Provided
Machinery Test Report
Provided
Marketing Type
New Product 2571
Warranty
12 Months
Key Selling Points
Long Service Life
Weight (KG)
1200 KG
Applicable Industries
Building Material Shops, Machinery Repair Shops, Manufacturing Plant, Construction works , Energy & Mining, Other
Local Service Location
None
Showroom Location
None
Brand Name
Yogie
Condition
New
Material
Alloy steel
Plating
anti-rust oil
Name
42CrMo Customized Large Forging Steel Rolling Mill Spare Part Roller
Quality
High Precision
Process
Lathing, milling,grinding,drilling
Heat treatment
heat treatment will be done
Diameter
860mm
Length
8000mm
Tolerance
±0.05
Torque Capacity
According to drawings
Inspection
chemical components, UT, dimension inspection
Certification
ISO
Packaging and delivery
Packaging Details
Plywood case
Port
ZheJiang ,HangZhou Port
Package Type:
Plywood case
attribute-list
Supply Ability
10000 Piece/Pieces per Year
Lead time
Quantity (kilograms) | 1 – 1000 | > 1000 |
Lead time (days) | 60 | To be negotiated |
Production Process
We can produce various specifications of gear, meanwhile, we can also provide gear blanks.
We have a full set of production processes and testing instruments for forging, heat treatment and machining.
We have 5 medium frequency furnaces and 5 electric slag heavy furnaces, which can produce 1 ton-18 tons of various types of alloy steel, with an annual capacity of 10,000 tons. The main characteristics of electroslag remelting are that it can flexibly produce various types of special steel in size and batch, with pure composition, uniform and dense crystal organization.
Natural gas digital display computer temperature control heating CZPT can accurately control the heating temperature of raw materials.
800T fast forging machine can quickly forge products, 3150T and 5000T oil press can forge heavy-duty axle products. They can guarantee the forging ratio required by the product, and ensure a good metallographic structure.
More than 20 digital display resistance furnaces can be used fot normalizing, quenching and tempering products, at the same time, there are induction quenching and carburization process, so as to ensure the mechanical performance requirements of the gear
We have a number of , HOFLER and other gear rolling machine, inner tooth ring milling machine, gear insertion machine, gear grinding machine and car milling CZPT center and other gear processing equipment.
TS regards Quality as the essential part of our business success. Based on your requirements, we have raw material in-coming inspection, process control and pre-shipment inspection. With advanced test equipments such as spectrometer, CMM, tensile strength tester, microscope, hardness tester, etc, TS is CZPT to apply sufficient chemical and physical inspection. According to your request, we are also capable to do X-Ray, Magnetic Testing, Ultrasonic Testing and liquid Penetrant Examination.
PRODUCT PACKAGING
OUR WORKSHOPS
COOPERATIVE BRAND
Product Packaging
Product PackaPRging
Material: | Steel |
---|---|
Load: | Drive Shaft |
Appearance Shape: | Steel |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can screw jacks be adapted for use in both indoor and outdoor environments?
Yes, screw jacks can be adapted for use in both indoor and outdoor environments. They are versatile mechanical devices that can be designed and manufactured to withstand various environmental conditions. Here’s how screw jacks can be adapted for both indoor and outdoor use:
- Enclosure and Sealing: When screw jacks are intended for outdoor use, they can be equipped with enclosures and sealing mechanisms to protect the internal components from environmental factors such as moisture, dust, or debris. These enclosures are typically made from durable materials like stainless steel or corrosion-resistant coatings to ensure long-term protection.
- Corrosion Resistance: Outdoor environments often expose equipment to corrosive elements. To address this, screw jacks can be manufactured with corrosion-resistant materials or coatings. Stainless steel or zinc plating are commonly used to enhance the corrosion resistance of screw jacks, making them suitable for outdoor applications where exposure to moisture, humidity, or chemicals is expected.
- Weatherproofing: Screw jacks can be designed with weatherproofing features to resist environmental conditions such as rain, snow, or extreme temperatures. This may include seals, gaskets, or protective covers that prevent water or debris from entering the internal components, ensuring reliable operation in outdoor environments.
- UV Resistance: Outdoor applications often expose equipment to ultraviolet (UV) radiation from sunlight. Screw jacks can be manufactured using materials that are UV-resistant or incorporate UV-protective coatings. This helps prevent degradation or discoloration of the components due to prolonged exposure to sunlight.
- Temperature Considerations: Screw jacks can be designed to operate within a wide temperature range to accommodate diverse outdoor environments. Specialized lubricants and materials with high-temperature stability can be used to ensure proper functioning and prevent damage or degradation in extreme temperature conditions.
- IP Ratings: In certain applications, screw jacks may require specific Ingress Protection (IP) ratings to ensure their suitability for outdoor use. IP ratings indicate the level of protection against solids and liquids. Screw jacks can be manufactured with specific IP ratings to meet the environmental requirements of different outdoor applications.
By incorporating these adaptations, screw jacks can be effectively used in both indoor and outdoor environments. Whether it’s in manufacturing facilities, construction sites, or outdoor maintenance tasks, screw jacks provide reliable performance and can withstand the challenges posed by various environmental conditions.
Can screw jacks be customized or integrated into larger systems for specific uses?
Yes, screw jacks can be customized or integrated into larger systems to meet specific requirements and applications. Their modular nature and versatility allow for various customization and integration possibilities. Here are some ways screw jacks can be customized or integrated into larger systems:
- Load Capacity Customization: Screw jacks can be customized to handle specific load capacities. Manufacturers can design and manufacture screw jacks with different load ratings to accommodate the requirements of a particular application. By customizing the load capacity, screw jacks can be optimized for lifting and supporting a wide range of loads, from light loads in precision applications to heavy machinery in industrial settings.
- Mounting and Connection Options: Screw jacks can be customized to have different mounting and connection options. This allows for seamless integration into existing systems or specific applications. Manufacturers can provide various mounting configurations, such as flange mounts, base mounts, trunnion mounts, or clevis ends, to ensure easy installation and compatibility with the surrounding equipment or structures.
- Stroke Length Customization: The stroke length of a screw jack can be customized to suit specific requirements. The stroke length refers to the distance the lifting screw travels during the jack’s operation. By customizing the stroke length, screw jacks can be tailored to the required vertical movement or extension needed in a particular application. This customization ensures optimal performance and efficiency in lifting or positioning tasks.
- Specialized Materials and Coatings: Screw jacks can be customized with specialized materials or coatings to enhance their performance in specific environments. For example, in corrosive or harsh conditions, screw jacks can be manufactured using corrosion-resistant materials such as stainless steel or coated with protective finishes. This customization ensures the longevity and reliability of screw jacks in demanding applications.
- Integration with Motorized Systems: Screw jacks can be integrated with motorized systems to automate the lifting and positioning processes. By adding electric or hydraulic motorization, screw jacks can be controlled and synchronized with other components or systems, providing precise and automated operations. This integration enables efficient and programmable movements, reducing manual labor and increasing productivity.
- Control and Monitoring Integration: Screw jacks can be integrated with control and monitoring systems for enhanced functionality and safety. By incorporating sensors, limit switches, or feedback mechanisms, screw jacks can provide real-time feedback on position, load, or other parameters. This integration allows for accurate control, monitoring, and protection of the screw jack and the larger system it is a part of.
The customization and integration options for screw jacks make them highly adaptable to specific uses and applications. Manufacturers often work closely with customers to understand their requirements and provide tailored solutions that optimize the performance, efficiency, and reliability of screw jacks within larger systems.
What are the key components that make up a typical screw jack mechanism?
A typical screw jack mechanism consists of several key components that work together to convert rotational motion into linear motion and handle heavy loads. Here are the key components that make up a typical screw jack mechanism:
- Screw: The screw is a threaded shaft that forms the primary component of the screw jack mechanism. It has helical grooves running along its length and is responsible for converting rotary motion into linear motion. The pitch of the screw determines the linear displacement achieved per revolution.
- Nut: The nut is a component that engages with the screw’s threads. It is typically a cylindrical or rectangular block with a threaded hole that matches the screw’s threads. The nut moves along the screw’s threads when the screw is rotated, resulting in linear displacement.
- Housing: The housing, also known as the body or casing, provides support and protection to the internal components of the screw jack mechanism. It encloses the screw and nut, preventing contaminants from entering and ensuring smooth operation.
- Base: The base is the foundation of the screw jack mechanism. It provides stability and support to the entire system, especially when heavy loads are involved. The base is typically designed to be mounted on a solid surface or integrated into a larger structure.
- Input Device: The input device is responsible for providing the rotational motion to the screw. It can be a manual handle, an electric motor, a hydraulic or pneumatic system, or any other mechanism that generates the required rotary motion.
- Load Platform: The load platform, also known as the lifting platform or load-bearing surface, is the component that supports and carries the load to be lifted or lowered. It is typically attached to the nut and moves vertically as the nut travels along the screw’s threads.
- Supporting Columns or Legs: In some screw jack mechanisms, supporting columns or legs are used to provide additional stability and structural support. These columns or legs are connected to the base and help distribute the load evenly.
- Locking Mechanism: Some screw jack mechanisms include a locking mechanism to secure the load in a fixed position once the desired height or displacement is achieved. This mechanism prevents unintended movement or slippage of the load.
- Optional Accessories: Depending on the specific application, screw jack mechanisms can be equipped with additional accessories such as limit switches, position sensors, motor controllers, lubrication systems, or protective covers to enhance safety, control, and performance.
In summary, a typical screw jack mechanism consists of components such as the screw, nut, housing, base, input device, load platform, supporting columns, locking mechanism, and optional accessories. These components work together to convert rotary motion into linear motion and provide the means to lift, lower, or position heavy loads with precision and control.
editor by CX 2023-11-19
China factory China Professional Production Drive Shaft Gear Shaft Motor Shaft Rotor Shaft Spline Shaft Steel Shaft screw conveyor end shaft
Product Description
Motor shaft
Product Description
Product Name | Motor shaft |
Design | Can be at the customer’ request, tailor-made, at customer’s design |
Advantage | ZJD can provide the motor shaft according to customers technical specifications. |
Our Advantages
Application
Product Display
Company Profile
ZJD is located in Xihu (West Lake) Dis. Economic Development Zone, Xihu (West Lake) Dis. District, HangZhou, ZheJiang , which has very good transportation convenience and location advantages.ZJD own 1 subsidiary, which is located in HangZhou city, ZheJiang province, which is mainly responsible for EMU accessories for CRRC’s factory nearby.
ZJD’s production and office space is more than 12,000 square meters, and more than 60 sets of various types of CNC machining and quality control equipment.ZJD’s main products are widely used in CHINAMFG CR400, CR300, CR200 series standard EMUs, and expanded to subways, export passenger cars and EMUs and other products.
ZJD has more than 60 employees and more than 20 technical management personnel. The technical management team has many years of working experience in the rail transit industry.
Certifications
ZJD has obtained the national high-tech enterprise certification, 6 types of products have passed the high-tech certification, and related products have obtained more than 20 patents.
ZJD has established a comprehensive quality management system and has got ISO9001 quality management system certification, ISO/TS 22163 (IRIS) international railway industry standard certification, EN15085-2 railway vehicles welding system certification, and CHINAMFG product supply service qualification certification.
FAQ
1. Who are we?
HangZhou ZJD Rail Equipment Co.,Ltd. was established in 2012, which is a professional manufacturer of rail equipment and accessories.
2. Are you a reliable supplier?
ZJD-Excellent Manufacturer focusing on the rolling stock industry
Provide full-process Design, Production, Testing and Service according to customer requirements.
3.What can you buy from us?
We have designed and supplied a series of products such an air duct systems, piping systerms, pneumatic control units,etc.The product are used in various fields such an EMUs,subways,locomotives,wagon engineering vehicles,etc.
4. What services can we provide?
Provide customized services of heavy industry products for special requirements.
Provide diversified parts and trade services such as port machinery, steel heavy industry, mining machinery, etc.
Provide customized products for new energy equipment
Provide key process technology solutions for special parts in the field of new energy equipment.
Material: | Carbon Steel |
---|---|
Load: | Revolution Axis |
Stiffness & Flexibility: | Stiffness / Rigid Axle |
Axis Shape: | Straight Shaft |
Shaft Shape: | Real Axis |
Appearance Shape: | Round |
Customization: |
Available
| Customized Request |
---|
Lead Screws and Clamp Style Collars
If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:
Acme thread
The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
Lead screw coatings
The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
Clamp style collars
The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these two styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
Ball screw nut
The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during one rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with one or two independent closed paths. Multi-circuit ball nuts have two or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.
editor by CX 2023-11-13
China OEM Main Sliding Drive Forged Steel Pinion Screw Helical Worm Gear Shaft best set screw for round shaft
Product Description
Key attributes of Main Sliding Drive Forged Steel Pinion Screw Helical Worm Gear Shaft
Industry-specific attributes of Main Sliding Drive Forged Steel Pinion Screw Helical Worm Gear Shaft
CNC Machining or Not | Cnc Machining |
Material Capabilities | Aluminum, Brass, Bronze, Copper, Hardened Metals, Precious Metals, Stainless steel, Steel Alloys |
Other attributes of Main Sliding Drive Forged Steel Pinion Screw Helical Worm Gear Shaft
Place of Origin | ZheJiang , China |
Type | Broaching, Drilling, Etching / Chemical Machining, Laser Machining, Milling, Turning, Wire EDM, Other Machining Services |
Model Number | OEM |
Brand Name | OEM |
Material | Metal |
Process | Cnc Machining+deburrs |
Surface treatment | Customer’s Request |
Equipment | CNC Machining Centres / Core moving machine / precision lathe / Automatic loading and unloading equipment |
Processing Type | Milling / Turning / Stamping |
OEM/ODM | OEM & ODM CNC Milling Turning Machining Service |
Drawing Format | 2D/(PDF/CAD)3D(IGES/STEP) |
Our Service | OEM ODM Customers’drawing |
Materials Avaliable | Stainless Steel / Aluminum / Metals / Copper / Plastic |
Photo of Customizable Electroplating/Coating/Passivation/Polishing/Sandblasting/Anodize/QPQ Small Batch CNC Machining Part
product inform
ation of Customizable Electroplating/Coating/Passivation/Polishing/Sandblasting/Anodize/QPQ Small Batch CNC Machining Part
Business Type | Factory / Manufacturer |
Service | CNC Machining |
Turning and Milling | |
CNC Turning | |
OEM Parts | |
Material | 1). Aluminum: AL 6061-T6, 6063, 7075-T etc |
2). Stainless steel: 303,304,316L, 17-4(SUS630) etc | |
3). Steel: 4140, Q235, Q345B,20#,45# etc. | |
4). Titanium: TA1,TA2/GR2, TA4/GR5, TC4, TC18 etc | |
5). Brass: C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc | |
6). Copper, bronze, Magnesium alloy, Delrin, POM,Acrylic, PC, etc. | |
Finish | Sandblasting, Anodize color, Blackenning, Zinc/Nickl Plating, Polish, |
Power coating, Passivation PVD, Titanium Plating, Electrogalvanizing, | |
Electroplating chromium, electrophoresis, QPQ(Quench-Polish-Quench), | |
Electro Polishing,Chrome Plating, Knurl, Laser etch Logo, etc. | |
Main Equipment | CNC Machining center, CNC Lathe, precision lathe |
Automatic loading and unloading equipment | |
Core moving machine | |
Drawing format | STEP,STP,GIS,CAD,PDF,DWG,DXF etc or samples. |
Tolerance | +/-0.001mm ~ +/-0.05mm |
Surface roughness | Ra 0.1~3.2 |
Test Equipment | Complete test lab with Projector, High-low temperature test chamber, Tensile tester Gauge, Salt fog test |
Inspection | Complete inspection lab with Micrometer, Optical Comparator, Caliper Vernier,CMM |
Depth Caliper Vernier, Universal Protractor, Clock Gauge | |
Capacity | CNC turning work range: φ0.5mm-φ150mm*300mm |
CNC center work range: 510mm*850mm*500mm | |
Core moving machine work range: φ32mm*85mm | |
Gerenal Tolerance: (+/-mm) |
CNC Machining: 0.005 |
Core moving: 0.005 | |
Turning: 0.005 | |
Grinding(Flatness/in2): 0.003 | |
ID/OD Grinding: 0.002 | |
Wire-Cutting: 0.002 |
RFQ of of Main Sliding Drive Forged Steel Pinion Screw Helical Worm Gear Shaft
Certification: | ISO9001 |
---|---|
Standard: | DIN, ASTM, GOST, GB, JIS, ANSI, BS |
Customized: | Customized |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Screw Shaft Types and Uses
Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
Major diameter of a screw shaft
A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its two outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between one thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in one turn. While lead and pitch are two separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are three different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from one manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
Material of a screw shaft
A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than one made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each one will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between two and sixteen millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are two basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
Function of a screw shaft
When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.
editor by CX 2023-11-11
China Standard Stainless Steel Custom Machined Worm Gear Screw Shaft extrusion screw shaft
Product Description
Stainless Steel Custom Machined Worm Gear Screw Shaft
Specification:;
1.;Material | Aluminum,; Brass,; Bronze,; Copper,; Hardened Metals |
2.;Tolerance | +/-0.;05mm |
3.;Finishing | anodizing,;polishing,;plating ,;blacken ect |
4.;Edges and holes | debarred |
5.;Surfaces | free of scratches |
6.;Material capabilities | aluminum,; stainless steel,; copper,; plastic and more |
7.;Various materials and finishing ways are available | |
8.;Non-standard aluminum product | |
9.;Material and finishing comply with RoHS Directive | |
10.;Small orders are welcome |
Technical Details
Technical Process | CNC machining,; EDM W/C |
Dimension | Client’s artwork is available |
Capability | Milling:;Length,;machining range up to 1100*600 mm |
Turning:; Diameter 0.;05mm~300mm ; Length 0.;5mm ~ 750mm | |
Wire Cutting:; machining range can up to 450*400*300mm | |
Precision | Turning and Milling:;+/- 0.;002mm(+/-0.;000098 inch); |
Wire Cutting:; +/- 0.;002 mm (+/-0.;000098 inch); |
Material Used Table
S/N | TYPE | CHINA | USA | JAPAN | GERMANY | SWEDEN |
GB | ASTM | JIS | DIN | ASSAB | ||
1 | Martenslte stainless steel | 9CR 18Mov | 440c | sus440c | X105CrMo17 | 440CI |
2 | Martenslte stainless steel | / | / | / | / | S136H |
3 | Austensite stainless steel | 01Cr18N19 | 304 | SUS304 | X5Crnl 13-10 | / |
4 | Austensite stainless steel | Y1Cr18N19 | 303 | SUS303 | X12CrniS18.;8 | / |
5 | Prehardened stainless steel | Cr12Mov | D2 | SKD11 | X165CrMov48 | XW-41 |
6 | Cold work die steel | 0Cr17nl4Cu4Nb | 17-4PH | SUS630 | X5CrNiCuNb | / |
7 | Cold work die steel | / | / | / | / | DF-2 |
8 | Powderhigh Speed Steel | / | / | / | / | ASO-23 |
9 | Powderhigh Speed Steel | / | CPM-10V | / | / | / |
10 | Cold work die steel | C6Mov | A2 | SKD12 | X100CrMov5 | / |
11 | Cold work die steel | 7Mn2CrMo | A6 | / | / | / |
12 | Carbon construction steel | 45 | 1045 | S45C | C45 | / |
13 | Spring Steel | 65 | 1065 | S65C | C65 | / |
14 | Spring Steel | / | 1095 | / | / | / |
Equipment :;
Name | Quantity (set); |
Origin | Precision | Running Distance |
CNC gantry machine | 1 | China | 0.;005mm | 2000*1300mm |
CNC machining Centers | 1 | China | 0.;005mm | 600*500mm |
CNC horizontal machine center | 4 | China | 0.;005mm | 800*500mm |
CNC machining Centers | 9 | China | 0.;005mm | 600*500mm |
CNC lathe/mill machine center | 4 | China | 0.;005mm | 50*150mm |
Lathe Machine | 2 | China | 0.;01mm | 200*750mm |
Milling Machine | 10 | China | 0.;01mm | 300*700mm |
grinding machine | 3 | Tai Wan | 0.;003mm | 150*400mm |
High Speed W/C | 4 | China | 0.;015mm | 250*300*400mm |
Slow Feeding W/C | 1 | China | ||
Sand Blast Machine | 1 | China | ||
Polishing Machine | 1 | China |
Why Choose us:;
1.; Fully Machining Services:;
Gringing parts ,; Machining parts,; CNC milling and turning parts ,; CNC milling parts,; CNC
metal parts,; grinding parts,; stamping parts,; casting and forging parts,; assembly service.;
2.;Various Machining Materials:;
Metal parts,; stainless steel parts,; alloy steel parts ,;brass parts,; bronze parts,; copper
parts,; aluminum parts,; plastic parts,; ect.;
3.;Various Finishes:;
Anodizing,; Electroplating,; Polishing,; Powder Coating,; Blacken,; Hardening,; Painting and
many other treatment of the parts.;
4.;Quality Assurance :;
IPQC inspect each precision grinding parts during every processing step; 100% inspection before shipment by micrometer,; height gauge,; projector measuring machine,; coordinate
measuring machine(CMM);,; ect.; Any disqualification will be responsible by us.;
5.;Advantage:;
1>.;Non-standard/standard/OEM/ODM/customized service provided
2> No MOQ,; no quantity limited
3 >Fast lead time
4> Can meet DIN,;JIS,;ASTM,;AISI,;BS,;GB standard
Related Products
Equipment Show
After Service
Welcome consult with us,; we service:;
1.; Best Solution for your production
2.; Fast delivery for your urgent order.;
Material: | Stainless Steel |
---|---|
Load: | Central Spindle |
Stiffness & Flexibility: | Flexible Shaft |
Journal Diameter Dimensional Accuracy: | IT6-IT9 |
Axis Shape: | Straight Shaft |
Shaft Shape: | Real Axis |
Customization: |
Available
| Customized Request |
---|
Types of Screw Shafts
Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which one is the best choice for your project? Here are some tips to choose the right screw:
Machined screw shaft
The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
Acme screw
An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
Lead screw
A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, one should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.
Fully threaded screw
A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are two major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically one millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect two elements.
Ball screw
The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.
editor by CX 2023-11-09